Turbochargers - How to spin your way in first place!

Posted on by 2

A turbocharger is an exhaust gas-driven compressor used to increase the power output of an internal-combustion engine by compressing air that is entering the engine thus increasing the amount of available oxygen. A key advantage of turbochargers is that they offer a considerable increase in engine power with only a slight increase in weight.

Principle of operation

A turbocharger is a dynamic compressor, in which air or gas is compressed by the mechanical action of impellers, vaned rotors which are spun using the kinetic movement of air, imparting velocity and pressure to the flowing medium.

The mechanical concept turbocharger revolves around three main parts. A turbine is driven by the exhaust gas from a pump, most often an internal combustion engine, to spin an impeller whose function is to force more air into the pump’s intake, or air supply. The third basic part is a center hub rotating assembly (CHRA) which contains bearing, lubrication, cooling, and a shaft that directly connects the turbine and impeller. The shaft, bearing, impeller, and turbine can rotate at speeds in the tens or hundreds of thousands of RPM (revolutions per minute).

The lubrication system can be either a closed system or be fed from the engine’s oil supply. The lubrication system may double as the cooling system, or separate coolant may be pumped through the center housing from an outside source. Oil lubrication and water cooling using engine oil and engine coolant are commonplace in automotive applications.

The turbine and impeller are each contained within their own folded conical housing on opposite sides of the center hub rotating assembly. These housings collect and direct the gas flow. The size and shape can dictate some performance characteristics of the overall turbocharger. The area of the cone to radius from center hub is expressed as a ratio (AR, A/R, or A:R). Often the same basic turbocharger assembly will be available from the manufacturer with multiple AR choices for the turbine housing and sometimes the compressor cover as well. This allows the designer of the engine system to tailor the compromises between performance, response, and efficiency to application or preference. Both housings resemble snail shells, and thus turbochargers are sometimes referred to in slang as snails.

By spinning at a relatively high speed the compressor turbine draws in a large volume of air and forces it into the engine. As the turbocharger’s output flow volume exceeds the engine’s volumetric flow, air pressure in the intake system begins to build, often called boost. The speed at which the assembly spins is proportional to the pressure of the compressed air and total mass of air flow being moved. Sin Sin ce a turbo will spin to RPMs far beyond what is needed or of what it is mechanically capable of, the speed must be controlled, and thus is also the property used to set the desired compression pressure. A wastegate is the most common mechanical control system and is often further augmented by an electronic boost controller.

The implementation of a turbocharger is to improve upon the size to output efficiency of an engine by solving for one of its cardinal limitations. A naturally aspirated automobile engine uses only the downward stroke of a piston to create an area of low pressure in order to draw air into the cylinder. Since the number of air and fuel molecules determine the potential energy available to force the piston down on the combustion stroke, and because of the relatively constant pressure of the atmosphere, there ultimately will be a limit to the amount of air and consequently fuel filling the combustion chamber. This ability to fill the cylinder with air is its volumetric efficiency. Since the turbocharger increases the pressure at the point where air is entering the cylinder, and the amount of air brought into the cylinder is largely a function of time and pressure, more air will be drawn in as the pressure increases. The intake pressure, in the absence of the turbocharger determined by the atmosphere, can be controllably increased with the turbocharger.

The application of a compressor to increase pressure at the point of cylinder air intake is often referred to as forced induction. Centrifugal superchargers operate in the same fashion as a turbo; however, the energy to spin the compressor is taken from the rotating output energy of the engine’s crankshaft as opposed to exhaust gas. For this reason turbochargers are ideally more efficient, since their turbines are actually heat engines, converting some of the heat energy from the exhaust gas that would otherwise be wasted, into useful work. Superchargers use output energy to achieve a net gain, which is at the expense of some of the engine’s total output.

Fuel efficiency

Since a turbocharger increases the specific horsepower output of an engine, the engine will also produce increased amounts of waste heat. This can sometimes be a problem when fitting a turbocharger to a car that was not designed to cope with high heat loads. This extra waste heat combined with the lower compression ratio (more specifically, expansion ratio) of turbocharged engines contributes to slightly lower thermal efficiency, which has a small but direct impact on overall fuel efficiency.

It is another form of cooling that has the largest impact on fuel efficiency: charge cooling. Even with the benefits of intercooling, the total compression in the combustion chamber is greater than that in a naturally-aspirated engine. To avoid knock while still extracting maximum power from the engine, it is common practice to introduce extra fuel into the charge for the sole purpose of cooling. While this seems counterintuitive, this fuel is not burned. Instead, it absorbs and carries away heat when it changes phase from liquid to gas. Also, because it is more dense than the other inert substance in the combustion chamber, nitrogen, it has a higher specific heat and more heat capacitance. It "holds" this heat until it is released in the exhaust stream, preventing destructive knock. This thermodynamic property allows manufacturers to achieve good power output with common pump fuel at the expense of fuel economy and emissions.

Lastly, the efficiency of the turbocharger itself can have an impact on fuel efficiency. Using a small turbocharger will give good response and low lag at low to mid RPMs, but can choke the engine on the exhaust side and generate huge amounts of pumping-related heat on the intake side as RPMs rise. A large turbocharger will be very efficient at high RPMs, but is not a realistic application for a street driven automobile. Variable vane and ball bearing technologies can make a turbo more efficient across a wider operating range, however, other problems have prevented this technology from appearing in more road cars. Currently, the Porsche 911 Porsche 911 (997) Turbo and the Porsche Cayenne Porsche Cayenne Turbo S are the only gasoline cars in production with this kind of turbocharger. One way to take advantage of the different operating regimes of the two types of supercharger is sequential turbocharging, which uses a small turbocharger at low RPMs and a larger one at high RPMs.

The engine management systems of most modern vehicles can control boost and fuel delivery according to charge temperature, fuel quality, and altitude, among other factors. Some systems are more sophisticated and aim to deliver fuel even more precisely based on combustion quality. For example, the Trion Trion ic-7 system from Saab Automobile provides immediate feedback on the combustion while it is occurring using an electrical charge.

The new 2.0L FSI turbo engine from Volkswagen/Audi incorporates lean burn and direct injection technology to conserve fuel under low load conditions. It is a very complex system that involves many moving parts and sensors in order to manage airflow characteristics inside the chamber itself, allowing it to use a stratified charge with excellent atomization. The direct injection also has a tremendous charge cooling effect enabling this engine to use a higher compression ratio and boost pressures than a typical port-injection turbo engine.

Turbochargers - How to spin your way in first place!

Design details

The ideal gas law states that when all other variables are held constant, if pressure is increased in a system so will the temperature. Here exists one of the negative consequences of turbo charging, the increase in the temperature of air entering the engine due to compression.

A turbo spins very fast; most peak between 80,000 and 200,000 RPM (using low inertia turbos, 150,000-250,000 RPM) depending on size, weight of the rotating parts, boost pressure developed and compressor design. Such high rotation speeds would cause problems for standard ball bearings leading to failure so most turbo-chargers use fluid bearings. These feature a flowing layer of oil that suspends and cools the moving parts. The oil is usually taken from the engine-oil circuit and usually needs to be cooled by an oil cooler before it circulates through the engine. Some turbochargers use incredibly precise ball bearings that offer less friction than a fluid bearing but these are also suspended in fluid-dampened cavities. Lower friction means the turbo shaft can be made of lighter materials, reducing so-called turbo lag or boost lag. Some car makers use water cooled turbochargers for added bearing life.

Turbochargers with foil bearings are in development which eliminates the need for bearing cooling or oil delivery systems, thereby eliminating the most common cause of failure, while also significantly reducing turbo lag.

To manage the upper-deck air pressure, the turbocharger’s exhaust gas flow is regulated with a wastegate that bypasses excess exhaust gas entering the turbocharger’s turbine. This regulates the rotational speed of the turbine and the output of the compressor. The wastegate is opened and closed by the compressed air from turbo (the upper-deck pressure) and can be raised by using a solenoid to regulate the pressure fed to the wastegate membrane. This solenoid can be controlled by Automatic Performance Control, the engine’s electronic control unit or an after market boost control computer. Another method of raising the boost pressure is through the use of check and bleed valves to keep the pressure at the membrane lower than the pressure within the system.

Some turbochargers (normally called variable geometry turbochargers) utilise a set of vanes in the exhaust housing to maintain a constant gas velocity across the turbine, the same kind of control as used on power plant turbines. These turbochargers have minimal amount of lag, have a low boost threshold, and are very efficient at higher engine speeds. In many setups these turbos don’t even need a wastegate. The vanes are controlled by a membrane identical to the one on a wastegate but the level of control required is a bit different. The first production car to use these turbos was the limited-production 1989 Shelby Shelby CSX-VNT, equipped with a 2.2L petrol engine. The Shelby CSX-VNT utilised a turbo from Garrett, called the VNT-25 because it uses the same compressor and shaft as the more common Garrett T-25. This type of turbine is called a Variable Nozzle Turbine (VNT). Turbocharger manufacturer Aerocharger uses the term ’Variable Area Turbine Nozzle’ (VATN) to describe this type of turbine nozzle. Other common terms include Variable Turbine Geometry (VTG), Variable Geometry Turbo (VGT) and Variable Vane Turbine (VVT).

The 2006 Porsche 911 Turbo has a twin turbocharged 3.6-litre flat six, and the turbos used are BorgWarner’s Variable Geometry Turbos (VGTs) . This is significant because although VGTs have been used on advanced diesel engines for a few years and on the Shelby CSX-VNT, this is the first time the technology has been implemented on a high production petrol car (only 500 Shelby CSX-VNTs were produced) . This is because in petrol cars exhaust temperatures are much higher (than in diesel cars), and this normally has adverse effects on the delicate, moveable vanes of the turbo. Porsche engineers claim to have managed this problem with the new 911 Turbo.

Reliability

As long as the oil supply is clean and the exhaust gas does not become overheated (lean mixtures or advanced spark timing on a gasoline engine) a turbocharger can be very reliable but care of the unit is important. Replacing a turbo that lets go and sheds its blades will be expensive. The use of synthetic oils is recommended in turbo engines.

After high speed operation of the engine it is important to let the engine run at idle speed for around one to three minutes before turning off the engine. For example Saab Saab , in its owner manuals, recommends a period of just 30 seconds. This lets the turbo rotating assembly cool from the lower exhaust gas temperatures. Not doing this will also result in the critical oil supply to the turbocharger being severed when the engine stops while the turbine housing and exhaust manifold are still very hot, leading to coking of the lubricating oil trapped in the unit when the heat soaks into the bearings and later, failure of the supply of oil when the engine is next started causing rapid bearing wear and failure. Even small particles of burnt oil will accumulate and lead to choking the oil supply and failure. A turbo timer is a device designed to keep an automotive engine running for a pre-specified period of time, in order to execute this cool-down period automatically. Oil coking is completely eliminated by foil bearings. This problem is less pronounced with turbochargers used in diesel engines, due to the lower exhaust temperatures and generally slower engine speeds. It is usual for the manufacturer to specify a 10-second period of idling before switching off to ensure the turbocharger is running at its idle speed to prevent damage to the bearings when the oil supply is cut off.

By installing a Turbo timer, it will allow you to set the exact time in order for the turbos to cool down.

A more complex and problematic protective barrier against oil coking is the use of watercooled bearing cartridges. The water boils in the cartridge when the engine is shut off and forms a natural recirculation to drain away the heat. It is still a good idea to not shut the engine off while the turbo and manifold are still glowing.

In custom applications utilising tubular headers rather than cast iron manifolds, the need for a cooldown period is reduced because the lighter headers store much less heat than heavy cast iron manifolds.

Diesel engines are usually much kinder to turbos because their exhaust gas temperature is much lower than that of gasoline engines.


Lag

A lag is sometimes felt by the driver of a turbocharged vehicle as a delay between pushing on the accelerator pedal and feeling the turbo kick-in. This is symptomatic of the time taken for the exhaust system driving the turbine to come to high pressure and for the turbine rotor to overcome its rotational inertia and reach the speed necessary to supply boost pressure. The directly-driven compressor in a positive-displacement supercharger does not suffer this problem. (Centrifugal superchargers do not build boost at low RPMs like a positive displacement supercharger will). Conversely on light loads or at low RPM a turbocharger supplies less boost and the engine is more efficient than a supercharged engine.

Lag can be reduced by lowering the rotational inertia of the turbine, for example by using lighter parts to allow the spool-up to happen more quickly. Ceramic turbines are a big help in this direction. Unfortunately, their relative fragility limits the maximum boost they can supply. Another way to reduce lag is to change the aspect ratio of the turbine by reducing the diameter and increasing the gas-flow path-length. Increasing the upper-deck air pressure and improving the wastegate response helps but there are cost increases and reliability disadvantages that car manufacturers are not happy about. Lag is also reduced by using a foil bearing rather than a conventional oil bearing. This reduces friction and contributes to faster acceleration of the turbo’s rotating assembly.

Another common method of equalizing turbo lag is to have the turbine wheel "clipped", or to reduce the surface area of the turbine wheel’s rotating blades. By clipping a minute portion off the tip of each blade of the turbine wheel, less restriction is imposed upon the escaping exhaust gases. This imparts less impedance onto the flow of exhaust gases at low RPM, allowing the vehicle to retain more of its low-end torque, but also pushes the effective boost RPM to a slightly higher level. The amount a turbine wheel is and can be clipped is highly application-specific. Turbine clipping is measured and specified in degrees.

Other setups, most notably in V-type engines, utilize two identically-sized but smaller turbos, each fed by a separate set of exhaust streams from the engine. The two smaller turbos produce the same (or more) aggregate amount of boost as a larger single turbo, but since they are smaller they reach their optimal RPM, and thus optimal boost delivery, faster. Such an arrangement of turbos is typically referred to as a parallel twin-turbo system.

Some car makers combat lag by using two small turbos (such as Kia, Toyota, Subaru, Maserati, Mazda, and Audi Audi ). A typical arrangement for this is to have one turbo active across the entire rev range of the engine and one coming on-line at higher RPM. Early designs would have one turbocharger active up to a certain RPM, after which both turbochargers are active. Below this RPM, both exhaust and air inlet of the secondary turbo are closed. Being individually smaller they do not suffer from excessive lag and having the second turbo operating at a higher RPM range allows it to get to full rotational speed before it is required. Such combinations are referred to as a sequential twin-turbo. Sequential twin-turbos are usually much more complicated than a single or parallel twin-turbo systems because they require what amounts to three sets of pipes-intake and wastegate pipes for the two turbochargers as well as valves to control the direction of the exhaust gases. An example of this is the current BMW BMW E60 5-Series 535d. Many new diesel engines use this technology to not only eliminate lag but also to reduce fuel consumption and produce cleaner emissions.

Lag is not to be confused with the boost threshold; however, many publications still make this basic mistake. The boost threshold of a turbo system describes the minimum turbo RPM at which the turbo is physically able to supply the requested boost level. Newer turbocharger and engine developments have caused boost thresholds to steadily decline to where day-to-day use feels perfectly natural. Putting your foot down at 1200 engine RPM and having no boost until 2000 engine RPM is an example of boost threshold and not lag.

Race cars often utilise anti-lag to completely eliminate lag at the cost of reduced turbocharger life.

On modern diesel engines, this problem is virtually eliminated by utilising a variable geometry turbocharger.

Boost

Boost refers to the increase in manifold pressure that is generated by the turbocharged in the intake path or specifically intake manifold that exceeds normal atmospheric pressure. This is also the level of boost as shown on a pressure gauge, usually in bar, psi or possibly kPa. Colloquially also referred as "pounds of boost". This is representative of the extra air pressure that is achieved over what would be achieved without the forced induction.

Boost pressure is limited to keep the entire engine system including the turbo inside its design operating range by controlling the wastegate which shunts the exhaust gases away from the exhaust side turbine. In some cars the maximum boost depends on the fuel’s octane rating and is electronically regulated using a knock sensor, see Automatic Performance Control (APC).

Many diesel engines do not have any wastegate because the amount of exhaust energy is controlled directly by the amount of fuel injected into the engine and slight variations in boost pressure do not make a difference for the engine.

Turbochargers - How to spin your way in first place!

Applications

Turbocharging is very common on diesel engines in conventional automobiles, in trucks, locomotives, for marine and heavy machinery applications. In fact, for current automotive applications, non-turbocharged diesel engines are becoming increasingly rare. Diesels are particularly suitable for turbocharging for several reasons:

  • Naturally-aspirated diesels have lower power-to-weight ratios compared to gasoline engines; turbocharging will improve this P:W ratio.
  • Diesel engines require more robust construction because they already run at very high compression ratio and at high temperatures so they generally require little additional reinforcement to be able to cope with the addition of the turbocharger. Gasoline engines often require extensive modification for turbocharging.
  • Diesel engines have a narrower band of engine speeds at which they operate, thus making the operating characteristics of the turbocharger over that "rev range" less of a compromise than on a gasoline-powered engine.
  • Diesel engines blow nothing but air into the cylinders during cylinder charging, squirting fuel into the cylinder only after the intake valve has closed and compression has begun. Gasoline/petrol engines differ from this in that both fuel and air are introduced during the intake cycle and both are compressed during the compression cycle. The higher intake charge temperatures of forced-induction engines reduces the amount of compression that is possible with a gasoline/petrol engine, whereas diesel engines are far less sensitive to this.

Today, turbocharging is most commonly used on two types of engines: Gasoline engines in high-performance automobiles and diesel engines in transportation and other industrial equipment. Small cars in particular benefit from this technology, as there is often little room to fit a larger-output (and physically larger) engine. Saab has been the leading car maker using turbochargers in production cars, starting with the 1978 Saab 99. All current Saab models are turbocharged. The Porsche 944 utilized a turbo unit in the 944 Turbo (Porsche internal model number 951), to great advantage, bringing its 0-100 km/h (0-60 mph) times very close to its contemporary non-turbo "big brother", the Porsche 928.

Small car turbos are increasingly being used as the basis for small jet engines used for flying model aircraft—though the conversion is a highly specialised job—one not without its dangers. Jet engine enthusiasts have constructed home-built jet engines from automotive turbochargers, often running on propane and using a home-built combustion canister plumbed in between the high pressure side of the turbo’s compressor and the intake side of the turbine. An oil supply for the bearings is still needed, usually provided by an electric pump. Starting such home-built jets is usually achieved by blowing air through the unit with a compressor or a domestic leaf-blower. Making these engines is not an easy task- unless the combustion canister design is correct the engine will either fail to start, fail to stabilise once running or even over-rev and destroy itself.

Most modern turbocharged aircraft use an adjustable wastegate. The wastegate is controlled manually, or by a pneumatic/hydraulic control system, or, as is becoming more and more common, by a flight computer. In the interests of engine longevity, the wastegate is usually kept open, or nearly so, at sea-level to keep from overboosting the engine. As the aircraft climbs, the wastegate is gradually closed, maintaining the manifold pressure at or above sea-level. In aftermarket applications, aircraft turbochargers sometimes do not overboost the engine, but rather compress ambient air to sea-level pressure. For this reason, such aircraft are sometimes referred to as being turbo-normalised. Most applications produced by the major manufacturers (Beech, Cessna, Piper and others) increase the maximum engine intake air pressure by as much as 35%. Special attention to engine cooling and component strength is required because of the increased combustion heat and power.

Turbo-Alternator is a form of turbocharger that generates electricity instead of boosting engine’s air flow. On September 21, 2005, Foresight Vehicle announced the first known implementation of such unit for automobiles, under the name TIGERS (Turbo-generator Integrated Gas Energy Recovery System).

History

The turbocharger was invented by Swiss engineer Alfred Buchi, who had been working on steam turbines. His patent for the internal combustion turbocharger was applied for in 1905. Diesel ships and locomotives with turbochargers began appearing in the 1920s.

One of the first applications of a turbocharger to a non-Diesel engine came when General Electric engineer, Sanford Moss attached a turbo to a V12 Liberty aircraft engine. The engine was tested at Pikes Peak in Colorado at 14,000 feet to demonstrate that it could eliminate the power losses usually experienced in internal combustion engines as a result of altitude.

Turbochargers were first used in production aircraft engines in the 1930s prior to World War II. The primary purpose behind most aircraft-based applications was to increase the altitude at which the airplane can fly, by compensating for the lower atmospheric pressure present at high altitude. Aircraft such as the Lockheed P-38 Lightning, Boeing B-17 Flying Fortress and B-29 Superfortress all used exhaust driven "turbo-superchargers" to increase high altitude engine power. It is important to note that turbosupercharged aircraft engines actually utilized a gear-driven centrifugal type supercharger in series with a turbocharger.

Turbo-Diesel trucks were produced in Europe and America (notably by Cummins) after 1949. The turbocharger hit the automobile world in 1952 when Fred Agabashian qualified for pole position at the Indianapolis 500 and led for 100 miles before tire shards disabled the blower.

The Corvair’s innovative turbocharged flat-6 engine; The turbo, located at top right, feeds pressurized air into the engine through the chrome T-tube visible spanning the engine from left to right.

The first production turbocharged automobile engines came from General Motors. The A-body Oldsmobile Cutlass Jetfire and Chevrolet Chevrolet Corvair Monza Spyder were both fitted with turbochargers in 1962. The Oldsmobile is often recognized as the first, since it came out a few months earlier than the Corvair. Its Turbo Jetfire was a 215 in³ (3.5 L) V8, while the Corvair engine was either a 145 in³ (2.3 L)(1962-63) or a 164 in³ (2.7 L) (1964-66) flat-6. Both of these engines were abandoned within a few years, and GM’s next turbo engine came more than ten years later.

Offenhauser’s turbocharged engines returned to Indianapolis in 1966, with victories coming in 1968. The Offy turbo peaked at over 1,000 hp in 1973, while Porsche dominated the Can-Am series with a 1100 hp 917/30. Turbocharged cars dominated the Le Mans between 1976 and 1994.

BMW led the resurgence of the automobile turbo with the 1973 2002 Turbo, with Porsche following with the 911 Turbo, introduced at the 1974 Paris Motor Show. Buick Buick was the first GM division to bring back the turbo, in the 1978 Buick Regal Buick Regal , followed by the Mercedes Mercedes -Benz 300D and Saab 99 in 1978. The worlds first production turbodiesel automobile was also introduced in 1978 by Peugeot with the launch of the Peugeot 604 turbodiesel.

Renault however gave another step and installed a turbocharger to the smallest and lightest car they had, the R5, making it the first Supermini automobile with a turbocharger. This gave the car about 160bhp in street form and up to 300+ in race setup, an exorbitant power for a 1400cc motor. When combined with its incredible lightweight chassis, it could nip at the heels of the incredibly fast Ferrari 308. Pontiac also introduced a turbo in 1980 and Volvo Cars followed in 1981.

In Formula 1, in the so called "Turbo Era" of 1977 until 1989, engines with a capacity of 1500 cc could achieve anywhere from 1000 to 1500 hp (746 to 1119 kW) (Renault, Honda Honda , BMW). Renault Renault was the first manufacturer to apply turbo technology in the F1 field, in 1977. The project’s high cost was compensated for by its performance, and led to other engine manufacturers following suit. The Turbo-charged engines took over the F1 field and ended the Ford Cosworth DFV era in the mid 1980s.

Turbochargers - How to spin your way in first place!

2 comments:

umm az a kid i figure that u need a big one if u have a V12 brings out 1200 hp if u have a labo

what turbocharger would be good for my 98’ 240sx theres so many i dont know which one can you please help thanks

*Registration is required to post in this forum

Back to top